If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-15-76=0
We add all the numbers together, and all the variables
t^2-91=0
a = 1; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·1·(-91)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{91}}{2*1}=\frac{0-2\sqrt{91}}{2} =-\frac{2\sqrt{91}}{2} =-\sqrt{91} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{91}}{2*1}=\frac{0+2\sqrt{91}}{2} =\frac{2\sqrt{91}}{2} =\sqrt{91} $
| (x+-50)+19=180 | | 8(-n)-3=-19 | | 12x-32=10 | | 11x-3=35 | | 12(x+7)=132 | | 12x+11=30 | | 2x-3+51=100 | | z^2+5z-4=0 | | 1600*1*x=500 | | 269=-v+204 | | 262-u=218 | | 64=-v+171 | | 2y+5=47+13 | | 8x+13=7x+5x-7 | | 8x=2x+36= | | x+x+(x-1.3)=6 | | 30=k*5 | | 9=k*8 | | 8=k*9 | | 8=k*50 | | 8=50k | | 3(5a-2)=4(5a-2) | | h=-4.9t^2+12t+17 | | n/7-4=45 | | 100+25t=1500-75t | | 4(x-7)=5x-3x+10-6 | | 8(4+x)=4(2x+6) | | 5n-3=14 | | -4(u+6)=2(3u-4 | | 8/7*(x+4/3)+2=11/2 | | 3/4x+5/4=7/6 | | 5(x-16)=5(x+6) |